翻訳と辞書
Words near each other
・ De Dijk is Dicht
・ De Dion
・ De Dion tube
・ De Dion-Bouton
・ De Dion-Bouton tricycle
・ De divina proportione
・ De Divinatione
・ De divisione naturae
・ De divortio
・ De Do Do Do, De Da Da Da
・ De Docta Ignorantia
・ De doctrina christiana
・ De Doctrina Christiana (Milton)
・ De Doelen
・ De Dolle Brouwers
De Donder–Weyl theory
・ De Dondi
・ De donis conditionalibus
・ De Donk
・ De Doorns
・ De drabbade
・ De dragoste
・ De Drie Waaien, Afferden
・ De Droomfabriek
・ De droomkoningin
・ De Dubiis Nominibus
・ De Duif
・ De duivel
・ De duodecim abusivis saeculi
・ De Echoput


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

De Donder–Weyl theory : ウィキペディア英語版
De Donder–Weyl theory
In mathematical physics, the De Donder–Weyl theory is a formalism in the calculus of variations over spacetime which treats the space and time coordinates on equal footing. In this framework, a field is represented as a system that varies both in space and in time.
= -\partial H / \partial y^
|-
|\partial y^ / \partial x^ = \partial H / \partial p^_a
|-
|}
== De Donder–Weyl formulation of field theory ==
The De Donder–Weyl theory is based on a change of variables. Let ''xi'' be spacetime coordinates, for ''i'' = 1 to ''n'' (with ''n'' = 4 representing 3 + 1 dimensions of space and time), and ''ya'' field variables, for ''a'' = 1 to ''m'', and ''L'' the Lagrangian density.
:L = L(y^,\partial_i y^,x^)
With ''polymomenta'' ''pia'' defined as
:p^_a = \partial L / \partial (\partial_i y^)
and for ''De Donder–Weyl Hamiltonian function'' ''H'' defined as
:H = p^_a \partial_i y^ - L
the De Donder–Weyl equations are:〔Igor V. Kanatchikov: (''Towards the Born–Weyl quantization of fields'' ), arXiv:quant-ph/9712058v1 (submitted on 31 December 1997)〕
:\partial p^_a / \partial x^ = -\partial H / \partial y^ \, , \, \partial y^ / \partial x^ = \partial H / \partial p^_a
These canonical equations of motion are covariant. The theory is a formulation of a covariant Hamiltonian field theory and for ''n'' = 1 it reduces to Hamiltonian mechanics (see also action principle in the calculus of variations).
The generalization of Poisson brackets to the De Donder–Weyl theory
and the representation of De Donder-Weyl equations in terms of generalized Poisson brackets
was found by Kanatchikov in 1993.〔Igor V. Kanatchikov: (''On the Canonical Structure of the De Donder-Weyl Covariant Hamiltonian Formulation of Field Theory I. Graded Poisson brackets and equations of motion'' ), arXiv:hep-th/9312162v1 (submitted on 20 Dec 1993)〕

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「De Donder–Weyl theory」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.